Rapid PCR Thermocycling using Microscale Thermal Convection
نویسندگان
چکیده
Many molecular biology assays depend in some way on the polymerase chain reaction (PCR) to amplify an initially dilute target DNA sample to a detectable concentration level. But the design of conventional PCR thermocycling hardware, predominantly based on massive metal heating blocks whose temperature is regulated by thermoelectric heaters, severely limits the achievable reaction speed(1). Considerable electrical power is also required to repeatedly heat and cool the reagent mixture, limiting the ability to deploy these instruments in a portable format. Thermal convection has emerged as a promising alternative thermocycling approach that has the potential to overcome these limitations(2-9). Convective flows are an everyday occurrence in a diverse array of settings ranging from the Earth's atmosphere, oceans, and interior, to decorative and colorful lava lamps. Fluid motion is initiated in the same way in each case: a buoyancy driven instability arises when a confined volume of fluid is subjected to a spatial temperature gradient. These same phenomena offer an attractive way to perform PCR thermocycling. By applying a static temperature gradient across an appropriately designed reactor geometry, a continuous circulatory flow can be established that will repeatedly transport PCR reagents through temperature zones associated with the denaturing, annealing, and extension stages of the reaction (Figure 1). Thermocycling can therefore be actuated in a pseudo-isothermal manner by simply holding two opposing surfaces at fixed temperatures, completely eliminating the need to repeatedly heat and cool the instrument. One of the main challenges facing design of convective thermocyclers is the need to precisely control the spatial velocity and temperature distributions within the reactor to ensure that the reagents sequentially occupy the correct temperature zones for a sufficient period of time(10,11). Here we describe results of our efforts to probe the full 3-D velocity and temperature distributions in microscale convective thermocyclers(12). Unexpectedly, we have discovered a subset of complex flow trajectories that are highly favorable for PCR due to a synergistic combination of (1) continuous exchange among flow paths that provides an enhanced opportunity for reagents to sample the full range of optimal temperature profiles, and (2) increased time spent within the extension temperature zone the rate limiting step of PCR. Extremely rapid DNA amplification times (under 10 min) are achievable in reactors designed to generate these flows.
منابع مشابه
Education: DNA replication using microscale natural convection.
There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile...
متن کاملDna-to-go: a Portable Smartphone-enabled Pcr Assay Platform
We address the need for affordable, rapid, and easy to use diagnostic technologies by coupling an innovative thermocycling system that harnesses natural convection to perform rapid DNA amplification via the polymerase chain reaction (PCR) with smartphone-based detection. Our approach offers an inherently simple design that enables PCR to be completed in 10-20 minutes. Electrical power requireme...
متن کاملNanofluid forced convection through a microtube with constant heat flux and slip boundary
Given the need to increase the efficiency of heat transfer in thermal systems, especially systems using nanofluids in microscale and nanoscale heat transfer equipment ideas to improve their performance is very good.In present study, the flow and heat transfer of Water-Cu nanofluid in micro-tube with slip regime with constant wall heat flux numerically simulated with low Reynolds numbers. Sl...
متن کاملMircrowave-assisted Polymerase Chain Reaction (pcr) in Disposable Microdevices
Utilizing ~1 W of microwave power, we achieved heating of PCR buffer with unprecedented temperature ramp rates that allowed for rapid thermocycling. Polymeric microdevices, chosen for their low cost and ease of fabrication, were constructed from polycarbonate (PC), poly(methyl-methacrylate) (PMMA), and polyester-toner (PeT) using fast, simple microfabrication via computer-aided milling for PC a...
متن کاملStudy on Thermal and Hydrodynamic Indexes of a Nanofluid Flow in a Micro Heat Sink
The paper numerically presents laminar forced convection of a nanofluid flowing in a duct at microscale. Results were compared with both analytical and experimental data and observed good concordance with previous studies available in the literature. Influences of Brinkman and Reynolds number on thermal and hydrodynamic indexes have been investigated. For a given nanofluid, no change in efficie...
متن کامل